milvus-logo
LFAI
홈페이지
  • 튜토리얼

Milvus를 사용한 멀티모달 RAG

Open In Colab

이 튜토리얼에서는 Milvus, 시각화된 BGE 모델GPT-4o로 구동되는 멀티모달 RAG를 소개합니다. 이 시스템을 사용하면 사용자가 이미지를 업로드하고 텍스트 지침을 편집하면 BGE의 구성된 검색 모델에서 처리하여 후보 이미지를 검색할 수 있습니다. 그런 다음 GPT-4o는 가장 적합한 이미지를 선택하고 선택의 근거를 제공하는 재랭커 역할을 합니다. 이 강력한 조합은 효율적인 검색을 위한 Milvus, 정밀한 이미지 처리 및 매칭을 위한 BGE 모델, 고급 재랭킹을 위한 GPT-4o를 활용하여 원활하고 직관적인 이미지 검색 환경을 구현합니다.

준비

설치 종속성

$ pip install --upgrade pymilvus openai datasets opencv-python timm einops ftfy peft tqdm
$ git clone https://github.com/FlagOpen/FlagEmbedding.git
$ pip install -e FlagEmbedding

Google Colab을 사용하는 경우 방금 설치한 종속 요소를 사용하려면 런타임을 다시 시작해야 할 수 있습니다(화면 상단의 '런타임' 메뉴를 클릭하고 드롭다운 메뉴에서 '세션 다시 시작'을 선택).

데이터 다운로드

다음 명령은 예제 데이터를 다운로드하여 다음을 포함한 로컬 폴더 "./images_folder"에 추출합니다:

  • images: '가전제품', '휴대폰 및 액세서리', '전자제품' 카테고리의 약 900개 이미지가 포함된 Amazon 리뷰 2023의 하위 집합입니다.

  • leopard.jpg: 쿼리 이미지 예시.

$ wget https://github.com/milvus-io/bootcamp/releases/download/data/amazon_reviews_2023_subset.tar.gz
$ tar -xzf amazon_reviews_2023_subset.tar.gz

임베딩 모델 로드

이미지와 텍스트 모두에 대한 임베딩을 생성하기 위해 시각화된 BGE 모델 "bge-visualized-base-en-v1.5"를 사용하겠습니다.

1. 무게 다운로드

$ wget https://huggingface.co/BAAI/bge-visualized/resolve/main/Visualized_base_en_v1.5.pth

2. 인코더 빌드

import torch
from FlagEmbedding.visual.modeling import Visualized_BGE


class Encoder:
    def __init__(self, model_name: str, model_path: str):
        self.model = Visualized_BGE(model_name_bge=model_name, model_weight=model_path)
        self.model.eval()

    def encode_query(self, image_path: str, text: str) -> list[float]:
        with torch.no_grad():
            query_emb = self.model.encode(image=image_path, text=text)
        return query_emb.tolist()[0]

    def encode_image(self, image_path: str) -> list[float]:
        with torch.no_grad():
            query_emb = self.model.encode(image=image_path)
        return query_emb.tolist()[0]


model_name = "BAAI/bge-base-en-v1.5"
model_path = "./Visualized_base_en_v1.5.pth"  # Change to your own value if using a different model path
encoder = Encoder(model_name, model_path)

데이터 로드

이 섹션에서는 예제 이미지를 해당 임베딩과 함께 데이터베이스에 로드합니다.

임베딩 생성

데이터 디렉토리에서 모든 jpeg 이미지를 로드하고 인코더를 적용하여 이미지를 임베딩으로 변환합니다.

import os
from tqdm import tqdm
from glob import glob


# Generate embeddings for the image dataset
data_dir = (
    "./images_folder"  # Change to your own value if using a different data directory
)
image_list = glob(
    os.path.join(data_dir, "images", "*.jpg")
)  # We will only use images ending with ".jpg"
image_dict = {}
for image_path in tqdm(image_list, desc="Generating image embeddings: "):
    try:
        image_dict[image_path] = encoder.encode_image(image_path)
    except Exception as e:
        print(f"Failed to generate embedding for {image_path}. Skipped.")
        continue
print("Number of encoded images:", len(image_dict))
Generating image embeddings: 100%|██████████| 900/900 [00:20<00:00, 44.08it/s]

Number of encoded images: 900

Milvus에 삽입

해당 경로와 임베딩이 포함된 이미지를 Milvus 컬렉션에 삽입합니다.

인수는 MilvusClient:

  • uri 를 로컬 파일(예: ./milvus_demo.db)로 설정하는 것이 가장 편리한 방법인데, 이 경우 Milvus Lite가 자동으로 모든 데이터를 이 파일에 저장하기 때문입니다.
  • 데이터 규모가 큰 경우, 도커나 쿠버네티스에 더 고성능의 Milvus 서버를 설정할 수 있습니다. 이 설정에서는 서버 URL(예:http://localhost:19530)을 uri 으로 사용하세요.
  • 밀버스의 완전 관리형 클라우드 서비스인 질리즈 클라우드를 사용하려면, 질리즈 클라우드의 퍼블릭 엔드포인트와 API 키에 해당하는 uritoken 을 조정하세요.
from pymilvus import MilvusClient


dim = len(list(image_dict.values())[0])
collection_name = "multimodal_rag_demo"

# Connect to Milvus client given URI
milvus_client = MilvusClient(uri="./milvus_demo.db")

# Create Milvus Collection
# By default, vector field name is "vector"
milvus_client.create_collection(
    collection_name=collection_name,
    auto_id=True,
    dimension=dim,
    enable_dynamic_field=True,
)

# Insert data into collection
milvus_client.insert(
    collection_name=collection_name,
    data=[{"image_path": k, "vector": v} for k, v in image_dict.items()],
)
{'insert_count': 900,
 'ids': [451537887696781312, 451537887696781313, ..., 451537887696782211],
 'cost': 0}

제너레이티브 리랭커로 멀티모달 검색하기

이 섹션에서는 먼저 멀티모달 쿼리로 관련 이미지를 검색한 후 LLM 서비스를 사용하여 결과를 재랭크하고 설명이 포함된 최적의 이미지를 찾아보겠습니다.

이제 이미지와 텍스트 설명으로 구성된 쿼리 데이터로 고급 이미지 검색을 수행할 준비가 되었습니다.

query_image = os.path.join(
    data_dir, "leopard.jpg"
)  # Change to your own query image path
query_text = "phone case with this image theme"

# Generate query embedding given image and text instructions
query_vec = encoder.encode_query(image_path=query_image, text=query_text)

search_results = milvus_client.search(
    collection_name=collection_name,
    data=[query_vec],
    output_fields=["image_path"],
    limit=9,  # Max number of search results to return
    search_params={"metric_type": "COSINE", "params": {}},  # Search parameters
)[0]

retrieved_images = [hit.get("entity").get("image_path") for hit in search_results]
print(retrieved_images)
['./images_folder/images/518Gj1WQ-RL._AC_.jpg', './images_folder/images/41n00AOfWhL._AC_.jpg', './images_folder/images/51Wqge9HySL._AC_.jpg', './images_folder/images/51R2SZiywnL._AC_.jpg', './images_folder/images/516PebbMAcL._AC_.jpg', './images_folder/images/51RrgfYKUfL._AC_.jpg', './images_folder/images/515DzQVKKwL._AC_.jpg', './images_folder/images/51BsgVw6RhL._AC_.jpg', './images_folder/images/51INtcXu9FL._AC_.jpg']

GPT-4o로 순위 재조정

LLM을 사용하여 이미지의 순위를 매기고 사용자 쿼리와 검색된 결과를 기반으로 최상의 결과에 대한 설명을 생성합니다.

1. 파노라마 보기 만들기

import numpy as np
import cv2

img_height = 300
img_width = 300
row_count = 3


def create_panoramic_view(query_image_path: str, retrieved_images: list) -> np.ndarray:
    """
    creates a 5x5 panoramic view image from a list of images

    args:
        images: list of images to be combined

    returns:
        np.ndarray: the panoramic view image
    """
    panoramic_width = img_width * row_count
    panoramic_height = img_height * row_count
    panoramic_image = np.full(
        (panoramic_height, panoramic_width, 3), 255, dtype=np.uint8
    )

    # create and resize the query image with a blue border
    query_image_null = np.full((panoramic_height, img_width, 3), 255, dtype=np.uint8)
    query_image = Image.open(query_image_path).convert("RGB")
    query_array = np.array(query_image)[:, :, ::-1]
    resized_image = cv2.resize(query_array, (img_width, img_height))

    border_size = 10
    blue = (255, 0, 0)  # blue color in BGR
    bordered_query_image = cv2.copyMakeBorder(
        resized_image,
        border_size,
        border_size,
        border_size,
        border_size,
        cv2.BORDER_CONSTANT,
        value=blue,
    )

    query_image_null[img_height * 2 : img_height * 3, 0:img_width] = cv2.resize(
        bordered_query_image, (img_width, img_height)
    )

    # add text "query" below the query image
    text = "query"
    font_scale = 1
    font_thickness = 2
    text_org = (10, img_height * 3 + 30)
    cv2.putText(
        query_image_null,
        text,
        text_org,
        cv2.FONT_HERSHEY_SIMPLEX,
        font_scale,
        blue,
        font_thickness,
        cv2.LINE_AA,
    )

    # combine the rest of the images into the panoramic view
    retrieved_imgs = [
        np.array(Image.open(img).convert("RGB"))[:, :, ::-1] for img in retrieved_images
    ]
    for i, image in enumerate(retrieved_imgs):
        image = cv2.resize(image, (img_width - 4, img_height - 4))
        row = i // row_count
        col = i % row_count
        start_row = row * img_height
        start_col = col * img_width

        border_size = 2
        bordered_image = cv2.copyMakeBorder(
            image,
            border_size,
            border_size,
            border_size,
            border_size,
            cv2.BORDER_CONSTANT,
            value=(0, 0, 0),
        )
        panoramic_image[
            start_row : start_row + img_height, start_col : start_col + img_width
        ] = bordered_image

        # add red index numbers to each image
        text = str(i)
        org = (start_col + 50, start_row + 30)
        (font_width, font_height), baseline = cv2.getTextSize(
            text, cv2.FONT_HERSHEY_SIMPLEX, 1, 2
        )

        top_left = (org[0] - 48, start_row + 2)
        bottom_right = (org[0] - 48 + font_width + 5, org[1] + baseline + 5)

        cv2.rectangle(
            panoramic_image, top_left, bottom_right, (255, 255, 255), cv2.FILLED
        )
        cv2.putText(
            panoramic_image,
            text,
            (start_col + 10, start_row + 30),
            cv2.FONT_HERSHEY_SIMPLEX,
            1,
            (0, 0, 255),
            2,
            cv2.LINE_AA,
        )

    # combine the query image with the panoramic view
    panoramic_image = np.hstack([query_image_null, panoramic_image])
    return panoramic_image

쿼리 이미지와 검색된 이미지를 파노라마 보기에서 인덱스와 결합합니다.

from PIL import Image

combined_image_path = os.path.join(data_dir, "combined_image.jpg")
panoramic_image = create_panoramic_view(query_image, retrieved_images)
cv2.imwrite(combined_image_path, panoramic_image)

combined_image = Image.open(combined_image_path)
show_combined_image = combined_image.resize((300, 300))
show_combined_image.show()

Create a panoramic view 파노라마 보기 만들기

2. 재랭크 및 설명

결합된 이미지를 적절한 프롬프트와 함께 멀티모달 LLM 서비스로 전송하여 검색된 결과에 대한 설명과 함께 순위를 매깁니다. GPT-4o를 LLM으로 사용하려면 OpenAI API 키를 준비해야 합니다.

import requests
import base64

openai_api_key = "sk-***"  # Change to your OpenAI API Key


def generate_ranking_explanation(
    combined_image_path: str, caption: str, infos: dict = None
) -> tuple[list[int], str]:
    with open(combined_image_path, "rb") as image_file:
        base64_image = base64.b64encode(image_file.read()).decode("utf-8")

    information = (
        "You are responsible for ranking results for a Composed Image Retrieval. "
        "The user retrieves an image with an 'instruction' indicating their retrieval intent. "
        "For example, if the user queries a red car with the instruction 'change this car to blue,' a similar type of car in blue would be ranked higher in the results. "
        "Now you would receive instruction and query image with blue border. Every item has its red index number in its top left. Do not misunderstand it. "
        f"User instruction: {caption} \n\n"
    )

    # add additional information for each image
    if infos:
        for i, info in enumerate(infos["product"]):
            information += f"{i}. {info}\n"

    information += (
        "Provide a new ranked list of indices from most suitable to least suitable, followed by an explanation for the top 1 most suitable item only. "
        "The format of the response has to be 'Ranked list: []' with the indices in brackets as integers, followed by 'Reasons:' plus the explanation why this most fit user's query intent."
    )

    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {openai_api_key}",
    }

    payload = {
        "model": "gpt-4o",
        "messages": [
            {
                "role": "user",
                "content": [
                    {"type": "text", "text": information},
                    {
                        "type": "image_url",
                        "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
                    },
                ],
            }
        ],
        "max_tokens": 300,
    }

    response = requests.post(
        "https://api.openai.com/v1/chat/completions", headers=headers, json=payload
    )
    result = response.json()["choices"][0]["message"]["content"]

    # parse the ranked indices from the response
    start_idx = result.find("[")
    end_idx = result.find("]")
    ranked_indices_str = result[start_idx + 1 : end_idx].split(",")
    ranked_indices = [int(index.strip()) for index in ranked_indices_str]

    # extract explanation
    explanation = result[end_idx + 1 :].strip()

    return ranked_indices, explanation

랭킹 후 이미지 인덱스와 최상의 결과에 대한 이유를 가져옵니다:

ranked_indices, explanation = generate_ranking_explanation(
    combined_image_path, query_text
)

3. 설명과 함께 최상의 결과 표시

print(explanation)

best_index = ranked_indices[0]
best_img = Image.open(retrieved_images[best_index])
best_img = best_img.resize((150, 150))
best_img.show()
Reasons: The most suitable item for the user's query intent is index 6 because the instruction specifies a phone case with the theme of the image, which is a leopard. The phone case with index 6 has a thematic design resembling the leopard pattern, making it the closest match to the user's request for a phone case with the image theme.

The best result 최상의 결과

빠른 배포

이 튜토리얼을 통해 온라인 데모를 시작하는 방법에 대해 알아보려면 예제 애플리케이션을 참조하세요.

번역DeepLogo

피드백

이 페이지가 도움이 되었나요?