milvus-logo
LFAI
Home
  • Modelos

mGTE

mGTE es un modelo de representación de texto multilingüe y un modelo de reordenación para tareas de recuperación de texto.

Milvus se integra con el modelo de incrustación mGTE a través de la clase MGTEEmbeddingFunction. Esta clase proporciona métodos para codificar documentos y consultas utilizando el modelo de incrustación mGTE y devolver las incrustaciones como vectores densos y dispersos compatibles con la indexación de Milvus.

Para utilizar esta función, instale las dependencias necesarias:

pip install --upgrade pymilvus
pip install "pymilvus[model]"

A continuación, instancie la MGTEEmbeddingFunction:

from pymilvus.model.hybrid import MGTEEmbeddingFunction

ef = MGTEEmbeddingFunction(
    model_name="Alibaba-NLP/gte-multilingual-base", # Defaults to `Alibaba-NLP/gte-multilingual-base`
)

Parámetros:

  • model_name (cadena)

    Nombre del modelo de incrustación mGTE que se utilizará para la codificación. El valor por defecto es Alibaba-NLP/gte-multilingual-base.

Para crear incrustaciones para documentos, utilice el método encode_documents():

docs = [
    "Artificial intelligence was founded as an academic discipline in 1956.",
    "Alan Turing was the first person to conduct substantial research in AI.",
    "Born in Maida Vale, London, Turing was raised in southern England.",
]

docs_embeddings = ef.encode_documents(docs)

# Print embeddings
print("Embeddings:", docs_embeddings)
# Print dimension of embeddings
print(ef.dim)

El resultado esperado es similar al siguiente:

Embeddings: {'dense': [tensor([-4.9149e-03, 1.6553e-02, -9.5524e-03, -2.1800e-02, 1.2075e-02,
        1.8500e-02, -3.0632e-02, 5.5909e-02, 8.7365e-02, 1.8763e-02,
        2.1708e-03, -2.7530e-02, -1.1523e-01, 6.5810e-03, -6.4674e-02,
        6.7966e-02, 1.3005e-01, 1.1942e-01, -1.2174e-02, -4.0426e-02,
        ...
        2.0129e-02, -2.3657e-02, 2.2626e-02, 2.1858e-02, -1.9181e-02,
        6.0706e-02, -2.0558e-02, -4.2050e-02], device='mps:0')], 
 'sparse': <Compressed Sparse Row sparse array of dtype 'float64'
 with 41 stored elements and shape (3, 250002)>}

{'dense': 768, 'sparse': 250002}

Para crear incrustaciones para consultas, utilice el método encode_queries():

queries = ["When was artificial intelligence founded",
           "Where was Alan Turing born?"]

query_embeddings = ef.encode_queries(queries)

print("Embeddings:", query_embeddings)
print(ef.dim)

El resultado esperado es similar al siguiente:

Embeddings: {'dense': [tensor([ 6.5883e-03, -7.9415e-03, -3.3669e-02, -2.6450e-02, 1.4345e-02,
        1.9612e-02, -8.1679e-02, 5.6361e-02, 6.9020e-02, 1.9827e-02,
       -9.2933e-03, -1.9995e-02, -1.0055e-01, -5.4053e-02, -8.5991e-02,
        8.3004e-02, 1.0870e-01, 1.1565e-01, 2.1268e-02, -1.3782e-02,
        ...
        3.2847e-02, -2.3751e-02, 3.4475e-02, 5.3623e-02, -3.3894e-02,
        7.9408e-02, 8.2720e-03, -2.3459e-02], device='mps:0')], 
 'sparse': <Compressed Sparse Row sparse array of dtype 'float64'
 with 13 stored elements and shape (2, 250002)>}

{'dense': 768, 'sparse': 250002}

Traducido porDeepL

Tabla de contenidos

Try Managed Milvus for Free

Zilliz Cloud is hassle-free, powered by Milvus and 10x faster.

Get Started
Feedback

¿Fue útil esta página?