milvus-logo
LFAI
Home
  • Modelos

OpenAI

Milvus se integra con los modelos de OpenAI a través de la clase OpenAIEmbeddingFunction. Esta clase proporciona métodos para codificar documentos y consultas utilizando los modelos preentrenados de OpenAI y devolviendo las incrustaciones como vectores densos compatibles con la indexación de Milvus. Para utilizar esta funcionalidad, obtenga una clave API de OpenAI creando una cuenta en su plataforma.

Para utilizar esta función, instale las dependencias necesarias:

pip install --upgrade pymilvus
pip install "pymilvus[model]"

A continuación, instancie la OpenAIEmbeddingFunction:

from pymilvus import model

openai_ef = model.dense.OpenAIEmbeddingFunction(
    model_name='text-embedding-3-large', # Specify the model name
    api_key='YOUR_API_KEY', # Provide your OpenAI API key
    dimensions=512 # Set the embedding dimensionality
)

Parámetros:

  • model_name(cadena)

    El nombre del modelo OpenAI a utilizar para la codificación. Las opciones válidas son text-embedding-3-small, text-embedding-3-large y text-embedding-ada-002 (por defecto).

  • api_key(cadena)

    La clave de API para acceder a la API de OpenAI.

  • dimensions(int)

    El número de dimensiones que deben tener las incrustaciones resultantes. Sólo se admite en los modelos text-embedding-3 y posteriores.

Para crear incrustaciones para documentos, utilice el método encode_documents():

docs = [
    "Artificial intelligence was founded as an academic discipline in 1956.",
    "Alan Turing was the first person to conduct substantial research in AI.",
    "Born in Maida Vale, London, Turing was raised in southern England.",
]

docs_embeddings = openai_ef.encode_documents(docs)

# Print embeddings
print("Embeddings:", docs_embeddings)
# Print dimension and shape of embeddings
print("Dim:", openai_ef.dim, docs_embeddings[0].shape)

El resultado esperado es similar al siguiente:

Embeddings: [array([ 1.76741909e-02, -2.04964578e-02, -1.09788161e-02, -5.27223349e-02,
        4.23139781e-02, -6.64533582e-03,  4.21088142e-03,  1.04644023e-01,
        5.10009527e-02,  5.32827862e-02, -3.26061808e-02, -3.66494283e-02,
...
       -8.93232748e-02,  6.68255147e-03,  3.55093405e-02, -5.09071983e-02,
        3.74144339e-03,  4.72541340e-02,  2.11916920e-02,  1.00753829e-02,
       -5.76633997e-02,  9.68257990e-03,  4.62721288e-02, -4.33261096e-02])]
Dim: 512 (512,)

Para crear incrustaciones para consultas, utilice el método encode_queries():

queries = ["When was artificial intelligence founded", 
           "Where was Alan Turing born?"]

query_embeddings = openai_ef.encode_queries(queries)

# Print embeddings
print("Embeddings:", query_embeddings)
# Print dimension and shape of embeddings
print("Dim", openai_ef.dim, query_embeddings[0].shape)

El resultado esperado es similar al siguiente:

Embeddings: [array([ 0.00530251, -0.01907905, -0.01672608, -0.05030033,  0.01635982,
       -0.03169853, -0.0033602 ,  0.09047844,  0.00030747,  0.11853652,
       -0.02870182, -0.01526102,  0.05505067,  0.00993909, -0.07165466,
...
       -9.78106782e-02, -2.22669560e-02,  1.21873049e-02, -4.83198799e-02,
        5.32377362e-02, -1.90469325e-02,  5.62430918e-02,  1.02650477e-02,
       -6.21757433e-02,  7.88027793e-02,  4.91846527e-04, -1.51633881e-02])]
Dim 512 (512,)

Traducido porDeepLogo

Tabla de contenidos
Feedback

¿Fue útil esta página?