milvus-logo
LFAI
Home
  • Integrationen

Auswertung mit Ragas

Open In Colab GitHub Repository

Dieser Leitfaden zeigt, wie man Ragas verwendet, um eine auf Milvus aufbauende Retrieval-Augmented Generation (RAG) Pipeline zu evaluieren.

Das RAG-System kombiniert ein Retrievalsystem mit einem generativen Modell, um neuen Text auf der Grundlage einer vorgegebenen Aufforderung zu generieren. Das System ruft zunächst relevante Dokumente aus einem Korpus mit Milvus ab und verwendet dann ein generatives Modell, um neuen Text auf der Grundlage der abgerufenen Dokumente zu erzeugen.

Ragas ist ein Framework, das Sie bei der Bewertung Ihrer RAG-Pipelines unterstützt. Es gibt bereits Tools und Frameworks, die Ihnen bei der Erstellung dieser Pipelines helfen, aber die Bewertung und Quantifizierung der Leistung Ihrer Pipelines kann schwierig sein. An dieser Stelle kommt Ragas (RAG Assessment) ins Spiel.

Voraussetzungen

Vergewissern Sie sich, dass Sie die folgenden Abhängigkeiten installiert haben, bevor Sie dieses Notizbuch ausführen:

$ pip install --upgrade pymilvus openai requests tqdm pandas ragas

Wenn Sie Google Colab verwenden, müssen Sie möglicherweise die Runtime neu starten, um die soeben installierten Abhängigkeiten zu aktivieren (klicken Sie auf das Menü "Runtime" am oberen Rand des Bildschirms und wählen Sie "Restart session" aus dem Dropdown-Menü).

Wir werden in diesem Beispiel OpenAI als LLM verwenden. Sie sollten den api-Schlüssel OPENAI_API_KEY als Umgebungsvariable vorbereiten.

import os

os.environ["OPENAI_API_KEY"] = "sk-***********"

Definieren Sie die RAG-Pipeline

Wir werden die RAG-Klasse definieren, die Milvus als Vektorspeicher und OpenAI als LLM verwendet. Die Klasse enthält die Methode load, die die Textdaten in Milvus lädt, die Methode retrieve, die die ähnlichsten Textdaten zur gegebenen Frage abruft, und die Methode answer, die die gegebene Frage mit dem abgerufenen Wissen beantwortet.

from typing import List
from tqdm import tqdm
from openai import OpenAI
from pymilvus import MilvusClient


class RAG:
    """
    RAG (Retrieval-Augmented Generation) class built upon OpenAI and Milvus.
    """

    def __init__(self, openai_client: OpenAI, milvus_client: MilvusClient):
        self._prepare_openai(openai_client)
        self._prepare_milvus(milvus_client)

    def _emb_text(self, text: str) -> List[float]:
        return (
            self.openai_client.embeddings.create(input=text, model=self.embedding_model)
            .data[0]
            .embedding
        )

    def _prepare_openai(
        self,
        openai_client: OpenAI,
        embedding_model: str = "text-embedding-3-small",
        llm_model: str = "gpt-3.5-turbo",
    ):
        self.openai_client = openai_client
        self.embedding_model = embedding_model
        self.llm_model = llm_model
        self.SYSTEM_PROMPT = """
Human: You are an AI assistant. You are able to find answers to the questions from the contextual passage snippets provided.
"""
        self.USER_PROMPT = """
Use the following pieces of information enclosed in <context> tags to provide an answer to the question enclosed in <question> tags.
<context>
{context}
</context>
<question>
{question}
</question>
"""

    def _prepare_milvus(
        self, milvus_client: MilvusClient, collection_name: str = "rag_collection"
    ):
        self.milvus_client = milvus_client
        self.collection_name = collection_name
        if self.milvus_client.has_collection(self.collection_name):
            self.milvus_client.drop_collection(self.collection_name)
        embedding_dim = len(self._emb_text("foo"))
        self.milvus_client.create_collection(
            collection_name=self.collection_name,
            dimension=embedding_dim,
            metric_type="IP",  # Inner product distance
            consistency_level="Strong",  # Strong consistency level
        )

    def load(self, texts: List[str]):
        """
        Load the text data into Milvus.
        """
        data = []
        for i, line in enumerate(tqdm(texts, desc="Creating embeddings")):
            data.append({"id": i, "vector": self._emb_text(line), "text": line})

        self.milvus_client.insert(collection_name=self.collection_name, data=data)

    def retrieve(self, question: str, top_k: int = 3) -> List[str]:
        """
        Retrieve the most similar text data to the given question.
        """
        search_res = self.milvus_client.search(
            collection_name=self.collection_name,
            data=[self._emb_text(question)],
            limit=top_k,
            search_params={"metric_type": "IP", "params": {}},  # Inner product distance
            output_fields=["text"],  # Return the text field
        )
        retrieved_texts = [res["entity"]["text"] for res in search_res[0]]
        return retrieved_texts[:top_k]

    def answer(
        self,
        question: str,
        retrieval_top_k: int = 3,
        return_retrieved_text: bool = False,
    ):
        """
        Answer the given question with the retrieved knowledge.
        """
        retrieved_texts = self.retrieve(question, top_k=retrieval_top_k)
        user_prompt = self.USER_PROMPT.format(
            context="\n".join(retrieved_texts), question=question
        )
        response = self.openai_client.chat.completions.create(
            model=self.llm_model,
            messages=[
                {"role": "system", "content": self.SYSTEM_PROMPT},
                {"role": "user", "content": user_prompt},
            ],
        )
        if not return_retrieved_text:
            return response.choices[0].message.content
        else:
            return response.choices[0].message.content, retrieved_texts

Initialisieren wir die RAG-Klasse mit OpenAI- und Milvus-Clients.

openai_client = OpenAI()
milvus_client = MilvusClient(uri="./milvus_demo.db")

my_rag = RAG(openai_client=openai_client, milvus_client=milvus_client)

Was das Argument von MilvusClient betrifft:

  • Die Einstellung von uri als lokale Datei, z.B../milvus.db, ist die bequemste Methode, da sie automatisch Milvus Lite nutzt, um alle Daten in dieser Datei zu speichern.
  • Wenn Sie große Datenmengen haben, können Sie einen leistungsfähigeren Milvus-Server auf Docker oder Kubernetes einrichten. Bei dieser Einrichtung verwenden Sie bitte die Server-Uri, z. B.http://localhost:19530, als uri.
  • Wenn Sie Zilliz Cloud, den vollständig verwalteten Cloud-Service für Milvus, verwenden möchten, passen Sie uri und token an, die dem öffentlichen Endpunkt und dem Api-Schlüssel in Zilliz Cloud entsprechen.

Führen Sie die RAG-Pipeline aus und erhalten Sie die Ergebnisse

Wir verwenden das Milvus-Entwicklungshandbuch als privates Wissen in unserer RAG, was eine gute Datenquelle für eine einfache RAG-Pipeline ist.

Laden Sie es herunter und laden Sie es in die RAG-Pipeline.

import os
import urllib.request

url = "https://raw.githubusercontent.com/milvus-io/milvus/master/DEVELOPMENT.md"
file_path = "./Milvus_DEVELOPMENT.md"

if not os.path.exists(file_path):
    urllib.request.urlretrieve(url, file_path)
with open(file_path, "r") as file:
    file_text = file.read()

# We simply use "# " to separate the content in the file, which can roughly separate the content of each main part of the markdown file.
text_lines = file_text.split("# ")
my_rag.load(text_lines)  # Load the text data into RAG pipeline
Creating embeddings: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 47/47 [00:16<00:00,  2.80it/s]

Lassen Sie uns eine Abfrage über den Inhalt der Dokumentation des Entwicklungshandbuchs definieren. Und dann verwenden wir die Methode answer, um die Antwort und die abgerufenen Kontexttexte zu erhalten.

question = "what is the hardware requirements specification if I want to build Milvus and run from source code?"
my_rag.answer(question, return_retrieved_text=True)
('The hardware requirements specification to build and run Milvus from source code is 8GB of RAM and 50GB of free disk space.',
 ['Hardware Requirements\n\nThe following specification (either physical or virtual machine resources) is recommended for Milvus to build and run from source code.\n\n```\n- 8GB of RAM\n- 50GB of free disk space\n```\n\n##',
  'Building Milvus on a local OS/shell environment\n\nThe details below outline the hardware and software requirements for building on Linux and MacOS.\n\n##',
  "Software Requirements\n\nAll Linux distributions are available for Milvus development. However a majority of our contributor worked with Ubuntu or CentOS systems, with a small portion of Mac (both x86_64 and Apple Silicon) contributors. If you would like Milvus to build and run on other distributions, you are more than welcome to file an issue and contribute!\n\nHere's a list of verified OS types where Milvus can successfully build and run:\n\n- Debian/Ubuntu\n- Amazon Linux\n- MacOS (x86_64)\n- MacOS (Apple Silicon)\n\n##"])

Lassen Sie uns nun einige Fragen mit den entsprechenden Antworten vorbereiten. Wir erhalten die Antworten und Kontexte aus unserer RAG-Pipeline.

from datasets import Dataset
import pandas as pd

question_list = [
    "what is the hardware requirements specification if I want to build Milvus and run from source code?",
    "What is the programming language used to write Knowhere?",
    "What should be ensured before running code coverage?",
]
ground_truth_list = [
    "If you want to build Milvus and run from source code, the recommended hardware requirements specification is:\n\n- 8GB of RAM\n- 50GB of free disk space.",
    "The programming language used to write Knowhere is C++.",
    "Before running code coverage, you should make sure that your code changes are covered by unit tests.",
]
contexts_list = []
answer_list = []
for question in tqdm(question_list, desc="Answering questions"):
    answer, contexts = my_rag.answer(question, return_retrieved_text=True)
    contexts_list.append(contexts)
    answer_list.append(answer)

df = pd.DataFrame(
    {
        "question": question_list,
        "contexts": contexts_list,
        "answer": answer_list,
        "ground_truth": ground_truth_list,
    }
)
rag_results = Dataset.from_pandas(df)
df
Answering questions: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:03<00:00,  1.29s/it]
Frage Kontexte Antwort grund_wahrheit
0 Wie lauten die spezifischen Hardware-Anforderungen... [Hardware-Anforderungen\n\nDie folgende Spezifi... Die Spezifikation der Hardware-Anforderungen für... Wenn Sie Milvus bauen und von der Quelle aus betreiben...
1 Welche Programmiersprache wird zum Schreiben von... [CMake & Conan\n\nDie Algorithmenbibliothek von Mil... Mit welcher Programmiersprache wird die Kno... Welche Programmiersprache wird zum Schreiben von Knowher...
2 Was sollte sichergestellt werden, bevor die Codeabdeckung... [Codeabdeckung\n\nVor dem Einreichen Ihres Pull ... Bevor Sie Code Coverage durchführen, sollten Sie sicherstellen,... Bevor Sie Code Coverage durchführen, sollten Sie ...

Auswertung mit Ragas

Wir verwenden Ragas, um die Leistung unserer RAG-Pipeline-Ergebnisse zu bewerten.

Ragas bietet eine Reihe von Metriken, die einfach zu verwenden sind. Wir verwenden Answer relevancy, Faithfulness, Context recall und Context precision als Metriken für die Bewertung unserer RAG-Pipeline. Weitere Informationen zu den Metriken finden Sie in den Ragas Metrics.

from ragas import evaluate
from ragas.metrics import (
    answer_relevancy,
    faithfulness,
    context_recall,
    context_precision,
)

result = evaluate(
    rag_results,
    metrics=[
        answer_relevancy,
        faithfulness,
        context_recall,
        context_precision,
    ],
)

result
Evaluating:   0%|          | 0/12 [00:00<?, ?it/s]





{'answer_relevancy': 0.9445, 'faithfulness': 1.0000, 'context_recall': 1.0000, 'context_precision': 1.0000}

Übersetzt vonDeepLogo

Try Managed Milvus for Free

Zilliz Cloud is hassle-free, powered by Milvus and 10x faster.

Get Started
Feedback

War diese Seite hilfreich?