BGERerankFunction
BGERerankFunction is a class in milvus_model that takes a query and document as input and directly returns a similarity score instead of embeddings. This functionality uses the underlying BGE reranking model.
pymilvus.model.reranker.BGERerankFunction
Constructor
Constructs a BGERerankFunction for common use cases.
BGERerankFunction(
model_name: str = "BAAI/bge-reranker-v2-m3",
use_fp16: bool = True,
batch_size: int = 32,
normalize: bool = True,
device: Optional[str] = None,
)
PARAMETERS:
model_name (string) -
The name of the model to use. You can specify any of the available BGE reranker model names, for example,
BAAI/bge-reranker-base
,BAAI/bge-reranker-large
, etc. If you leave this parameter unspecified,BAAI/bge-reranker-v2-m3
will be used. For a list of available models, refer to Model List.use_fp16 (bool) -
Whether to utilize 16-bit floating-point precision (fp16). The value is
false
whendevice
iscpu
.batch_size (int) -
The batch size used for the computation.
normalize (bool)
Whether to normalize the reranking scores.
device (string) -
Optional. The device to use for running the model. If not specified, the model will be run on the CPU. You can specify
cpu
for the CPU andcuda:n
for the nth GPU device.
Examples
from pymilvus.model.reranker import BGERerankFunction
# Define the rerank function
bge_rf = BGERerankFunction(
model_name="BAAI/bge-reranker-v2-m3", # Specify the model name. Defaults to `BAAI/bge-reranker-v2-m3`.
device="cpu" # Specify the device to use, e.g., 'cpu' or 'cuda:0'
)