encode_queries()
This operation takes in a list of query strings and encodes each query into a vector embedding.
Request syntax
encode_queries(
queries: List[str],
) -> List[np.array]
PARAMETERS:
queries (List[str])
A list of string values, where each string represents a query that will be passed to the embedding model for encoding. The model will generate an embedding vector for each string in the list.
RETURN TYPE:
List[np.array]
RETURNS:
A list where each element is a NumPy array.
Exceptions:
ImportError
This exception will be raised when the necessary sentence-transformers module is not installed.
Examples
from pymilvus import model
sentence_transformer_ef = model.dense.SentenceTransformerEmbeddingFunction(
model_name='all-MiniLM-L6-v2', # Specify the model name
device='cpu' # Specify the device to use, e.g., 'cpu' or 'cuda:0'
)
queries = ["When was artificial intelligence founded",
"Where was Alan Turing born?"]
query_embeddings = sentence_transformer_ef.encode_queries(queries)
# Print embeddings
print("Embeddings:", query_embeddings)
# Print dimension and shape of embeddings
print("Dim:", sentence_transformer_ef.dim, query_embeddings[0].shape)
# Embeddings: [array([-2.52114702e-02, -5.29330298e-02, 1.14570223e-02, 1.95571519e-02,
# -2.46500354e-02, -2.66519729e-02, -8.48201662e-03, 2.82961670e-02,
# -3.65092754e-02, 7.50745758e-02, 4.28900979e-02, 7.18822703e-02,
# ...
# -6.76431581e-02, -6.45996556e-02, -4.67132553e-02, 4.78532910e-02,
# -2.31596199e-03, 4.13446948e-02, 1.06935494e-01, -1.08258888e-01],
# dtype=float32)]
# Dim: 384 (384,)