encode_queries()
This operation takes in a list of query strings and encodes each query into a vector embedding.
Request syntax
encode_queries(
queries: List[str],
) -> List[np.array]
PARAMETERS:
queries (List[str])
A list of string values, where each string represents a query that will be passed to the embedding model for encoding. The model will generate an embedding vector for each string in the list.
RETURN TYPE:
List[np.array]
RETURNS:
A list where each element is a NumPy array.
Exceptions:
ImportError
This exception will be raised when the model2vec module is not installed.
Examples
from pymilvus import model
model2vec_ef = Model2VecEmbeddingFunction(
model_source="minishlab/potion-base-8M" # Specify the model source (loads from Hugging Face or local path)
)
queries = ["When was artificial intelligence founded",
"Where was Alan Turing born?"]
query_embeddings = model2vec_ef.encode_queries(queries)
# Print embeddings
print("Embeddings:", query_embeddings)
# Print dimension and shape of embeddings
print("Dim:", model2vec_ef.dim, query_embeddings[0].shape)
# Embeddings: [array([-1.87109038e-02, -2.81724217e-03, -1.67356253e-01, -5.30372337e-02,
# 1.08304240e-01, -1.09269567e-01, -2.53464818e-01, -1.77880954e-02,
# 3.05427872e-02, 1.68244764e-01, -7.25950347e-03, -2.52178032e-02,
# -1.22040585e-01, -4.19903360e-02, -1.28572553e-01, 6.58077672e-02,
# ...
# -2.45161876e-02, 4.75575700e-02, 1.03392657e-02, 5.65353176e-03,
# 8.60440824e-03, 2.12906860e-03, 1.50156394e-02, -1.29304864e-02,
# -3.66544276e-02, 5.01735881e-03, -1.53137008e-02, 9.57900891e-04],
# dtype=float32)]
# Dim: 256 (256,)