encode_queries()
This operation takes in a list of query strings and encodes each query into a vector embedding.
Request syntax
encode_queries(
queries: List[str],
) -> List[np.array]
PARAMETERS:
queries (List[str])
A list of string values, where each string represents a query that will be passed to the embedding model for encoding. The model will generate an embedding vector for each string in the list.
RETURN TYPE:
List[np.array]
RETURNS:
A list where each element is a NumPy array.
Exceptions:
RuntimeError
This exception will be raised when the response from the Jina API does not contain the
data
key.
Examples
from pymilvus.model.dense import JinaEmbeddingFunction
jina_ef = JinaEmbeddingFunction(
model_name="jina-embeddings-v2-base-en", # Defaults to `jina-embeddings-v2-base-en`
api_key="YOUR_JINAAI_API_KEY" # Provide your Jina AI API key
)
queries = ["When was artificial intelligence founded",
"Where was Alan Turing born?"]
query_embeddings = jina_ef.encode_queries(queries)
print("Embeddings:", query_embeddings)
print("Dim", jina_ef.dim, query_embeddings[0].shape)
# Embeddings: [array([-5.99164660e-01, -3.49827350e-01, 8.22405160e-01, -1.18632730e-01,
# 5.78107540e-01, 1.09789170e-01, 2.91604200e-01, -3.29306450e-01,
# 2.93779640e-01, -2.17880800e-01, -6.84535440e-01, -3.79752000e-01,
# -3.47541800e-01, 9.20846100e-02, -6.13804400e-01, 6.31312800e-01,
# ...
# -1.84993740e-02, 9.38629150e-01, 2.74858470e-02, 1.09396360e+00,
# 3.96270750e-01, 7.44445800e-01, -1.95404050e-01, -6.08383200e-01,
# -3.75076300e-01, 3.87512200e-01, 8.11889650e-01, -3.76407620e-01])]
# Dim 768 (768,)