GeminiEmbeddingFunction
Model2VecEmbeddingFunction is a class in pymilvus that handles encoding text into embeddings using the GeminiEmbeddingFunction module to support embedding retrieval in Milvus.
pymilvus.model.dense.GeminiEmbeddingFunction
Constructor
Constructs an GeminiEmbeddingFunction for common use cases.
GeminiEmbeddingFunction(
model_name: str = "gemini-embedding-exp-03-07",
api_key: Optional[str] = None,
config: Optional['types.EmbedContentConfig']=None,
**kwargs,
)
PARAMETERS:
model_name (string) -
The name of the Gemini model to use for encoding. Valid options are gemini-embedding-exp-03-07(default), models/embedding-001, and models/text-embedding-004.
api_key (string)-**
The API key for accessing the Gemini API.
config (types.EmbedContentConfig) -**
Optional configuration for the embedding model.
The output_dimensionality can be specified to the number of resulting output embeddings.
Model Name
Dimensions
emini-embedding-exp-03-07
3072(default),1536,768
models/embedding-001
768
models/text-embedding-004
768
The task_type can be specified to generate optimized embeddings for specific tasks, saving you time and cost and improving performance. Only supported in the gemini-embedding-exp-03-07 model.
Task Type
Description
SEMANTIC_SIMILARITY
Used to generate embeddings that are optimized to assess text similarity.
CLASSIFICATION
Used to generate embeddings that are optimized to classify texts according to preset labels.
CLUSTERING
Used to generate embeddings that are optimized to cluster texts based on their similarities.
RETRIEVAL_DOCUMENT, RETRIEVAL_QUERY, QUESTION_ANSWERING, and FACT_VERIFICATION
Used to generate embeddings that are optimized for document search or information retrieval.
CODE_RETRIEVAL_QUERY
Used to retrieve a code block based on a natural language query, such as sort an array or reverse a linked list. Embeddings of the code blocks are computed using RETRIEVAL_DOCUMENT.
Examples
from pymilvus import model
gemini_ef = model.dense.GeminiEmbeddingFunction(
model_name="gemini-embedding-exp-03-07",
api_key="YOUR_API_KEY",
)