CrossEncoderRerankFunction
CrossEncoderRerankFunction is a class in milvus_model that takes a query and document as input and directly returns a similarity score instead of embeddings. This functionality uses the underlying Cross-Encoder reranking model.
pymilvus.model.reranker.CrossEncoderRerankFunction
Constructor
Constructs a CrossEncoderRerankFunction for common use cases.
CrossEncoderRerankFunction(
model_name: str = "",
device: str = "",
batch_size: int = 32,
activation_fct: Any = None,
**kwargs,
)
Parameters:
model_name (string)
The name of the model to use. You can specify any of the available Cross-Encoder model names, for example,
cross-encoder/ms-marco-TinyBERT-L-2-v2
,cross-encoder/ms-marco-MiniLM-L-2-v2
, etc. If you leave this parameter unspecified, an empty string will be used. For a list of available models, refer to Pretrained Cross-Encoders.device (string)
The device to use for running the model. You can specify
cpu
for the CPU andcuda:n
for the nth GPU device.batch_size (int)
The batch size for the computation.
activation_fct
The activation function applied on top of logits output of model.
****kwargs**
Allows additional keyword arguments to be passed to the model initialization. For more information, refer to cross_encoder.
Examples
from pymilvus.model.reranker import CrossEncoderRerankFunction
# Define the rerank function
ce_rf = CrossEncoderRerankFunction(
model_name="cross-encoder/ms-marco-MiniLM-L-6-v2", # Specify the model name. Defaults to an emtpy string.
device="cpu" # Specify the device to use, e.g., 'cpu' or 'cuda:0'
)