milvus-logo
LFAI
< Docs
  • Python
    • EmbeddingModels
      • SpladeEmbeddingFunction

encode_queries()

This operation takes in a list of query strings and encodes each query into a vector embedding.

Request syntax

encode_queries(
    queries: List[str], 
) -> csr_array

PARAMETERS:

  • queries (List[str])

    A list of string values, where each string represents a query that will be passed to the embedding model for encoding. The model will generate an embedding vector for each string in the list.

RETURN TYPE:

csr_array

RETURNS:

Compressed sparse row matrices representing the query embeddings.

Exceptions:

  • ImportError

    This exception will be raised when the transformers library is not installed.

Examples

from pymilvus import model

splade_ef = model.sparse.SpladeEmbeddingFunction(
    model_name="naver/splade-cocondenser-selfdistil", 
    device="cpu"
)

queries = ["When was artificial intelligence founded", 
           "Where was Alan Turing born?"]

query_embeddings = splade_ef.encode_queries(queries)

# Print embeddings
print("Embeddings:", query_embeddings)
# since the output embeddings are in a 2D csr_array format, we convert them to a list for easier manipulation.
print("Sparse dim:", splade_ef.dim, list(query_embeddings)[0].shape)

# Embeddings:   (0, 2001)   0.6353746056556702
#   (0, 2194)   0.015553371049463749
#   (0, 2301)   0.2756537199020386
# ...
#   (1, 18522)  0.1282549500465393
#   (1, 23602)  0.13133203983306885
#   (1, 28639)  2.8150033950805664
# Sparse dim: 30522 (1, 30522)

Try Managed Milvus for Free

Zilliz Cloud is hassle-free, powered by Milvus and 10x faster.

Get Started
Feedback

Was this page helpful?