encode_queries()
This operation takes in a list of query strings and encodes each query into a vector embedding.
Request syntax
encode_queries(
queries: List[str],
) -> csr_array
PARAMETERS:
queries (List[str])
A list of string values, where each string represents a query that will be passed to the embedding model for encoding. The model will generate an embedding vector for each string in the list.
RETURN TYPE:
csr_array
RETURNS:
Compressed sparse row matrices representing the query embeddings.
Exceptions:
ImportError
This exception will be raised when the transformers library is not installed.
Examples
from pymilvus import model
splade_ef = model.sparse.SpladeEmbeddingFunction(
model_name="naver/splade-cocondenser-selfdistil",
device="cpu"
)
queries = ["When was artificial intelligence founded",
"Where was Alan Turing born?"]
query_embeddings = splade_ef.encode_queries(queries)
# Print embeddings
print("Embeddings:", query_embeddings)
# since the output embeddings are in a 2D csr_array format, we convert them to a list for easier manipulation.
print("Sparse dim:", splade_ef.dim, list(query_embeddings)[0].shape)
# Embeddings: (0, 2001) 0.6353746056556702
# (0, 2194) 0.015553371049463749
# (0, 2301) 0.2756537199020386
# ...
# (1, 18522) 0.1282549500465393
# (1, 23602) 0.13133203983306885
# (1, 28639) 2.8150033950805664
# Sparse dim: 30522 (1, 30522)