milvus-logo
LFAI
< Docs
  • Python
    • EmbeddingModels

OpenAIEmbeddingFunction

OpenAIEmbeddingFunction is a class in pymilvus that handles encoding text into embeddings using OpenAI models to support embedding retrieval in Milvus.

pymilvus.model.dense.OpenAIEmbeddingFunction

Constructor

Constructs an OpenAIEmbeddingFunction for common use cases.

OpenAIEmbeddingFunction(
    model_name: str = "text-embedding-ada-002", 
    api_key: Optional[str] = None,
    base_url: Optional[str] = None,
    dimensions: Optional[int] = None,
    **kwargs
)

PARAMETERS:

  • model_name (string) -

    The name of the OpenAI model to use for encoding. Valid options are text-embedding-3-small, text-embedding-3-large, and text-embedding-ada-002 (default).

  • api_key (string) -

    The API key for accessing the OpenAI API. If you leave it unspecified, the code will check environment variables for the API key as a fallback.

  • base_url (string) -

    The base URL of the OpenAI API endpoint to use for encoding text into embeddings. The value defaults to None, which uses the public OpenAI API server at the default endpoint.

  • dimensions (int) -

    The number of dimensions the resulting output embeddings should have. Only supported in text-embedding-3 and later models.

  • ****kwargs**

    Allows additional keyword arguments to be passed to the model initialization. For more information, refer to Client.

Examples

from pymilvus import model

openai_ef = model.dense.OpenAIEmbeddingFunction(
    model_name='text-embedding-3-large', # Specify the model name
    dimensions=512 # Set the embedding dimensionality according to MRL feature.
)