encode_queries()
This operation takes in a list of query strings and encodes each query into a vector embedding.
Request syntax
encode_queries(
queries: List[str],
) -> List[np.array]
PARAMETERS:
queries (List[str])
A list of string values, where each string represents a query that will be passed to the embedding model for encoding. The model will generate an embedding vector for each string in the list.
RETURN TYPE:
List[np.array]
RETURNS:
A list where each element is a NumPy array.
Exceptions:
ValueError
This exception will be raised when
api_key
is not provided and theMISTRALAI_API_KEY
environment variable is also not set.
Examples
from pymilvus.model.dense import MistralAIEmbeddingFunction
ef = MistralAIEmbeddingFunction(
model_name="mistral-embed", # Defaults to `mistral-embed`
api_key="MISTRAL_API_KEY" # Provide your Mistral AI API key
)
queries = ["When was artificial intelligence founded",
"Where was Alan Turing born?"]
query_embeddings = ef.encode_queries(queries)
print("Embeddings:", query_embeddings)
print("Dim", ef.dim, query_embeddings[0].shape)
# Embeddings: [array([-0.04916382, 0.04568481, 0.03594971, ..., -0.02653503,
# 0.02804565, 0.00600815]), array([-0.05938721, 0.07098389, 0.01773071, ..., -0.01708984,
# 0.03582764, 0.00366592])]
# Dim 1024 (1024,)