MGTEEmbeddingFunction
MGTEEmbeddingFunction is a class in pymilvus that handles encoding text into embeddings using MGTE embedding models to support embedding retrieval in Milvus.
pymilvus.model.hybrid.MGTEEmbeddingFunction
Constructor
Constructs a MGTEEmbeddingFunction for common use cases.
MGTEEmbeddingFunction(
model_name: str = "Alibaba-NLP/gte-multilingual-base",
batch_size: int = 16,
device: str = "",
normalize_embeddings: bool = True,
dimensions: Optional[int] = None,
use_fp16: bool = False,
return_dense: bool = True,
return_sparse: bool = True,
**kwargs
)
PARAMETERS:
model_name (string)
The name of the GTE embedding model to use for encoding. The value defaults to
Alibaba-NLP/gte-multilingual-base
. For more information, refer to Models.batch_size (int)
The batch size to use for encoding.
device (string)
The device to use for the model.
normalize_embeddings (bool)
Whether to normalize the dense embeddings.
dimensions (int)
The number of dimensions for the dense embeddings. If not provided, it will use the model’s default hidden size.
use_fp16 (bool)
Whether to use 16-bit floating point precision.
return_dense (bool)
Whether to return dense embeddings.
return_sparse (bool)
Whether to return sparse embeddings.
kwargs
Allows additional keyword arguments to be passed to the model initialization.
Examples
from pymilvus.model.hybrid import MGTEEmbeddingFunction
ef = MGTEEmbeddingFunction(
model_name="Alibaba-NLP/gte-multilingual-base",
)