FieldSchema()
This is the constructor method to create a FieldSchema.
Invocation
FieldSchema(name, dtype, description='', **kwargs)
Return
A FieldSchema object.
Properties
Property | Description |
---|---|
name | Name of the field |
is_primary | Boolean value that indicates if the field is the primary key field |
is_partition_key | Boolean value that indicates if the field is a partition-key field. |
Example
from pymilvus import CollectionSchema, FieldSchema, DataType
book_id = FieldSchema(
name="book_id",
dtype=DataType.INT64,
is_primary=True,
)
book_name = FieldSchema(
name="book_name",
dtype=DataType.VARCHAR,
max_length=200, #max_length must be specified to limit the max length of VARCHAR. The value should be in (0, 65535].
)
word_count = FieldSchema(
name="word_count",
dtype=DataType.INT64,
)
book_intro = FieldSchema(
name="book_intro",
dtype=DataType.FLOAT_VECTOR,
dim=2
)
schema = CollectionSchema(
fields=[book_id, word_count, book_intro],
description="Test book search",
enable_dynamic_field=True
)
Supported data type
DataType
defines the kind of data a field contains. Different fields support different data types.
Primary key field supports:
- INT64: numpy.int64
- VARCHAR: VARCHAR
Scalar field supports:
- BOOL: Boolean (true or false)
- INT8: numpy.int8
- INT16: numpy.int16
- INT32: numpy.int32
- INT64: numpy.int64
- FLOAT: numpy.float32
- DOUBLE: numpy.double
- VARCHAR: VARCHAR
You can create a JSON field, comprising key-value pairs. Each key should be a string and values can be numbers, strings, boolean values, arrays, and lists. For details, read “JSON: a new data type”.
Vector field supports:
- BINARY_VECTOR: Binary vector
- FLOAT_VECTOR: Float vector