🚀 Try Zilliz Cloud, the fully managed Milvus, for free—experience 10x faster performance! Try Now>>

Milvus
Zilliz
  • Home
  • AI Reference
  • How can I integrate Haystack with other frameworks like LangChain and LlamaIndex?

How can I integrate Haystack with other frameworks like LangChain and LlamaIndex?

To integrate Haystack with LangChain and LlamaIndex, you can leverage their complementary strengths in document retrieval, language model orchestration, and data indexing. Haystack specializes in building search pipelines and question-answering systems, LangChain excels at chaining language model operations, and LlamaIndex focuses on efficient data indexing and retrieval. By combining these tools, you can create robust applications that handle complex workflows, such as retrieving documents, processing them with language models, and organizing results.

For LangChain integration, use Haystack components like retrievers or document stores within LangChain workflows. For example, wrap a Haystack retriever (e.g., ElasticsearchRetriever) as a LangChain Tool to enable LangChain agents to fetch relevant documents. Here’s a simplified code snippet:

from langchain.agents import Tool
from haystack.nodes import ElasticsearchRetriever

retriever = ElasticsearchRetriever(...)
haystack_tool = Tool(
 name="DocumentRetriever",
 func=lambda query: [doc.content for doc in retriever.retrieve(query)],
 description="Fetches documents related to a query"
)

Conversely, you can use LangChain’s LLM wrappers (e.g., OpenAI) within Haystack pipelines. For instance, add a LangChain-based PromptNode to Haystack to generate answers using LangChain’s model integrations. This allows Haystack to handle retrieval while LangChain manages the language model interaction.

For LlamaIndex, use its data connectors to ingest documents into Haystack. LlamaIndex’s SimpleDirectoryReader or database connectors can load data, which you can then index in Haystack’s document store (e.g., InMemoryDocumentStore). Alternatively, replace Haystack’s default retriever with LlamaIndex’s query engine for vector search. For example:

from llama_index import GPTVectorStoreIndex, SimpleDirectoryReader
from haystack.document_stores import InMemoryDocumentStore

documents = SimpleDirectoryReader("data").load_data()
index = GPTVectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine()

# Use LlamaIndex's query engine in Haystack via a custom component
class LlamaIndexRetriever:
 def retrieve(self, query):
 return [Document(content=query_engine.query(query).response)]

This setup allows Haystack to use LlamaIndex’s optimized indexing while retaining Haystack’s pipeline flexibility for tasks like filtering or post-processing.

The key benefit lies in combining Haystack’s modular pipelines with LangChain’s LLM orchestration and LlamaIndex’s indexing. For example, build a pipeline where LlamaIndex preprocesses and indexes data, Haystack retrieves relevant snippets, and LangChain generates summaries or answers. This approach is useful for applications like customer support systems, where you need fast retrieval (Haystack), structured LLM workflows (LangChain), and efficient data organization (LlamaIndex). Ensure compatibility by standardizing document formats (e.g., converting LlamaIndex nodes to Haystack Document objects) and using shared tools like FAISS or Elasticsearch for hybrid storage.

Like the article? Spread the word