MilvusとCamelを使用した検索拡張ジェネレーション(RAG)
このガイドでは、CAMELとMilvusを使用したRAG(Retrieval-Augmented Generation)システムの構築方法を示します。
RAGシステムは検索システムと生成モデルを組み合わせ、与えられたプロンプトに基づいて新しいテキストを生成する。このシステムは、まずMilvusを用いてコーパスから関連文書を検索し、次に生成モデルを用いて検索された文書に基づいて新しいテキストを生成する。
CAMELはマルチエージェントフレームワークである。Milvusは世界で最も先進的なオープンソースのベクトルデータベースであり、埋め込み類似検索やAIアプリケーションのために構築されている。
このノートブックでは、CAMEL Retrieve Moduleの使い方を、カスタマイズ方法と自動方法の両方で紹介する。また、AutoRetriever
をChatAgent
と組み合わせ、さらにFunction Calling
を使ってAutoRetriever
をRolePlaying
と組み合わせる方法も紹介します。
4つの主要な部分を含む:
- カスタマイズRAG
- 自動RAG
- オートRAGによるシングルエージェント
- Auto RAGによるロールプレイング
データのロード
まず、https://arxiv.org/pdf/2303.17760.pdf からCAMELペーパーをロードしてみよう。これがローカルのサンプルデータになります。
$ pip install -U "camel-ai[all]" pymilvus
Google Colabを使用している場合、インストールしたばかりの依存関係を有効にするために、ランタイムを再起動する必要があるかもしれません(画面上部の "Runtime "メニューをクリックし、ドロップダウンメニューから "Restart session "を選択してください)。
import os
import requests
os.makedirs("local_data", exist_ok=True)
url = "https://arxiv.org/pdf/2303.17760.pdf"
response = requests.get(url)
with open("local_data/camel paper.pdf", "wb") as file:
file.write(response.content)
1.カスタマイズされたRAG
このセクションでは、カスタマイズした RAG パイプラインを設定します。VectorRetriever
を例とします。ここでは、OpenAIEmbedding
をエンベッディングモデルとして設定し、MilvusStorage
をストレージとして設定します。
OpenAIのエンベッディングを設定するには、OPENAI_API_KEY
。
os.environ["OPENAI_API_KEY"] = "Your Key"
エンベッディングのインスタンスをインポートして設定する:
from camel.embeddings import OpenAIEmbedding
embedding_instance = OpenAIEmbedding()
ベクターストレージのインスタンスをインポートして設定する:
from camel.storages import MilvusStorage
storage_instance = MilvusStorage(
vector_dim=embedding_instance.get_output_dim(),
url_and_api_key=(
"./milvus_demo.db", # Your Milvus connection URI
"", # Your Milvus token
),
collection_name="camel_paper",
)
url_and_api_key
:
- ローカルファイル、例えば
./milvus.db
をMilvus接続URIとして使用するのが最も便利です。 - データ規模が大きい場合は、dockerやkubernetes上に、よりパフォーマンスの高いMilvusサーバを構築することができます。この場合、URLはサーバのURI、例えば
http://localhost:19530
を使用してください。 - MilvusのフルマネージドクラウドサービスであるZilliz Cloudを利用する場合は、Zilliz CloudのPublic EndpointとApi keyに対応する接続uriとtokenを調整してください。
Retrieverインスタンスをインポートして設定します:
デフォルトでは、similarity_threshold
が0.75に設定されています。変更可能です。
from camel.retrievers import VectorRetriever
vector_retriever = VectorRetriever(
embedding_model=embedding_instance, storage=storage_instance
)
コンテンツを小さなチャンクに分割するために、統合されたUnstructured Module
を使用します。コンテンツは、chunk_by_title
関数を使用して自動的に分割されます。各チャンクの最大文字数は500文字で、OpenAIEmbedding
に適した長さです。各チャンクの最大文字数は500文字で、 に適した長さです。チャンク内のテキストはすべて埋め込まれて、ベクトル・ストレージ・インスタンスに格納されます。
vector_retriever.process(content_input_path="local_data/camel paper.pdf")
[nltk_data] Downloading package punkt to /root/nltk_data...
[nltk_data] Unzipping tokenizers/punkt.zip.
[nltk_data] Downloading package averaged_perceptron_tagger to
[nltk_data] /root/nltk_data...
[nltk_data] Unzipping taggers/averaged_perceptron_tagger.zip.
ここで、クエリーを与えることで、ベクトル・ストレージから情報を取り出すことができます。デフォルトでは、コサイン類似度スコアが最も高い上位1つのチャンクからテキストコンテンツを返します。検索されたコンテンツがクエリに関連していることを確認するために、類似度スコアは0.75以上でなければなりません。また、top_k
の値を変更することもできます。
返される文字列リストには
- 類似度スコア
- コンテンツパス
- メタデータ
- テキスト
retrieved_info = vector_retriever.query(query="What is CAMEL?", top_k=1)
print(retrieved_info)
[{'similarity score': '0.8321675658226013', 'content path': 'local_data/camel paper.pdf', 'metadata': {'last_modified': '2024-04-19T14:40:00', 'filetype': 'application/pdf', 'page_number': 45}, 'text': 'CAMEL Data and Code License The intended purpose and licensing of CAMEL is solely for research use. The source code is licensed under Apache 2.0. The datasets are licensed under CC BY NC 4.0, which permits only non-commercial usage. It is advised that any models trained using the dataset should not be utilized for anything other than research purposes.\n\n45'}]
無関係なクエリを試してみましょう:
retrieved_info_irrelevant = vector_retriever.query(
query="Compared with dumpling and rice, which should I take for dinner?", top_k=1
)
print(retrieved_info_irrelevant)
[{'text': 'No suitable information retrieved from local_data/camel paper.pdf with similarity_threshold = 0.75.'}]
2.自動RAG
このセクションでは、AutoRetriever
をデフォルト設定で実行する。デフォルトの埋め込みモデルとしてOpenAIEmbedding
、デフォルトのベクトルストレージとしてMilvus
。
必要なことは
- コンテンツの入力パスを設定します。ローカルパスでもリモートURLでもかまいません。
- MilvusのリモートURLとapiキーを設定する。
- クエリを与える
Auto RAGパイプラインは与えられたコンテンツ入力パスに対してコレクションを作成する。コレクション名はコンテンツ入力パス名に基づいて自動的に設定され、コレクションが存在する場合は直接検索を行う。
from camel.retrievers import AutoRetriever
from camel.types import StorageType
auto_retriever = AutoRetriever(
url_and_api_key=(
"./milvus_demo.db", # Your Milvus connection URI
"", # Your Milvus token
),
storage_type=StorageType.MILVUS,
embedding_model=embedding_instance,
)
retrieved_info = auto_retriever.run_vector_retriever(
query="What is CAMEL-AI",
content_input_paths=[
"local_data/camel paper.pdf", # example local path
"https://www.camel-ai.org/", # example remote url
],
top_k=1,
return_detailed_info=True,
)
print(retrieved_info)
Original Query:
{What is CAMEL-AI}
Retrieved Context:
{'similarity score': '0.8252888321876526', 'content path': 'local_data/camel paper.pdf', 'metadata': {'last_modified': '2024-04-19T14:40:00', 'filetype': 'application/pdf', 'page_number': 7}, 'text': ' Section 3.2, to simulate assistant-user cooperation. For our analysis, we set our attention on AI Society setting. We also gathered conversational data, named CAMEL AI Society and CAMEL Code datasets and problem-solution pairs data named CAMEL Math and CAMEL Science and analyzed and evaluated their quality. Moreover, we will discuss potential extensions of our framework and highlight both the risks and opportunities that future AI society might present.'}
{'similarity score': '0.8378663659095764', 'content path': 'https://www.camel-ai.org/', 'metadata': {'filetype': 'text/html', 'languages': ['eng'], 'page_number': 1, 'url': 'https://www.camel-ai.org/', 'link_urls': ['#h.3f4tphhd9pn8', 'https://join.slack.com/t/camel-ai/shared_invite/zt-2g7xc41gy-_7rcrNNAArIP6sLQqldkqQ', 'https://discord.gg/CNcNpquyDc'], 'link_texts': [None, None, None], 'emphasized_text_contents': ['Mission', 'CAMEL-AI.org', 'is an open-source community dedicated to the study of autonomous and communicative agents. We believe that studying these agents on a large scale offers valuable insights into their behaviors, capabilities, and potential risks. To facilitate research in this field, we provide, implement, and support various types of agents, tasks, prompts, models, datasets, and simulated environments.', 'Join us via', 'Slack', 'Discord', 'or'], 'emphasized_text_tags': ['span', 'span', 'span', 'span', 'span', 'span', 'span']}, 'text': 'Mission\n\nCAMEL-AI.org is an open-source community dedicated to the study of autonomous and communicative agents. We believe that studying these agents on a large scale offers valuable insights into their behaviors, capabilities, and potential risks. To facilitate research in this field, we provide, implement, and support various types of agents, tasks, prompts, models, datasets, and simulated environments.\n\nJoin us via\n\nSlack\n\nDiscord\n\nor'}
3.自動RAGによるシングルエージェント
このセクションでは、AutoRetriever
を1つのChatAgent
に結合する方法を示します。
エージェント関数を設定します。この関数で、このエージェントにクエリを提供することで、レスポンスを取得できます。
from camel.agents import ChatAgent
from camel.messages import BaseMessage
from camel.types import RoleType
from camel.retrievers import AutoRetriever
from camel.types import StorageType
def single_agent(query: str) -> str:
# Set agent role
assistant_sys_msg = BaseMessage(
role_name="Assistant",
role_type=RoleType.ASSISTANT,
meta_dict=None,
content="""You are a helpful assistant to answer question,
I will give you the Original Query and Retrieved Context,
answer the Original Query based on the Retrieved Context,
if you can't answer the question just say I don't know.""",
)
# Add auto retriever
auto_retriever = AutoRetriever(
url_and_api_key=(
"./milvus_demo.db", # Your Milvus connection URI
"", # Your Milvus token
),
storage_type=StorageType.MILVUS,
embedding_model=embedding_instance,
)
retrieved_info = auto_retriever.run_vector_retriever(
query=query,
content_input_paths=[
"local_data/camel paper.pdf", # example local path
"https://www.camel-ai.org/", # example remote url
],
# vector_storage_local_path="storage_default_run",
top_k=1,
return_detailed_info=True,
)
# Pass the retrieved infomation to agent
user_msg = BaseMessage.make_user_message(role_name="User", content=retrieved_info)
agent = ChatAgent(assistant_sys_msg)
# Get response
assistant_response = agent.step(user_msg)
return assistant_response.msg.content
print(single_agent("What is CAMEL-AI"))
CAMEL-AI is an open-source community dedicated to the study of autonomous and communicative agents. It provides, implements, and supports various types of agents, tasks, prompts, models, datasets, and simulated environments to facilitate research in this field.
4.オート RAG によるロールプレイング
このセクションでは、Function Calling
を適用して、RETRIEVAL_FUNCS
とRolePlaying
を組み合わせる方法を示します。
from typing import List
from colorama import Fore
from camel.agents.chat_agent import FunctionCallingRecord
from camel.configs import ChatGPTConfig
from camel.functions import (
MATH_FUNCS,
RETRIEVAL_FUNCS,
)
from camel.societies import RolePlaying
from camel.types import ModelType
from camel.utils import print_text_animated
def role_playing_with_rag(
task_prompt, model_type=ModelType.GPT_4O, chat_turn_limit=10
) -> None:
task_prompt = task_prompt
user_model_config = ChatGPTConfig(temperature=0.0)
function_list = [
*MATH_FUNCS,
*RETRIEVAL_FUNCS,
]
assistant_model_config = ChatGPTConfig(
tools=function_list,
temperature=0.0,
)
role_play_session = RolePlaying(
assistant_role_name="Searcher",
user_role_name="Professor",
assistant_agent_kwargs=dict(
model_type=model_type,
model_config=assistant_model_config,
tools=function_list,
),
user_agent_kwargs=dict(
model_type=model_type,
model_config=user_model_config,
),
task_prompt=task_prompt,
with_task_specify=False,
)
print(
Fore.GREEN
+ f"AI Assistant sys message:\n{role_play_session.assistant_sys_msg}\n"
)
print(Fore.BLUE + f"AI User sys message:\n{role_play_session.user_sys_msg}\n")
print(Fore.YELLOW + f"Original task prompt:\n{task_prompt}\n")
print(
Fore.CYAN
+ f"Specified task prompt:\n{role_play_session.specified_task_prompt}\n"
)
print(Fore.RED + f"Final task prompt:\n{role_play_session.task_prompt}\n")
n = 0
input_msg = role_play_session.init_chat()
while n < chat_turn_limit:
n += 1
assistant_response, user_response = role_play_session.step(input_msg)
if assistant_response.terminated:
print(
Fore.GREEN
+ (
"AI Assistant terminated. Reason: "
f"{assistant_response.info['termination_reasons']}."
)
)
break
if user_response.terminated:
print(
Fore.GREEN
+ (
"AI User terminated. "
f"Reason: {user_response.info['termination_reasons']}."
)
)
break
# Print output from the user
print_text_animated(Fore.BLUE + f"AI User:\n\n{user_response.msg.content}\n")
# Print output from the assistant, including any function
# execution information
print_text_animated(Fore.GREEN + "AI Assistant:")
tool_calls: List[FunctionCallingRecord] = assistant_response.info["tool_calls"]
for func_record in tool_calls:
print_text_animated(f"{func_record}")
print_text_animated(f"{assistant_response.msg.content}\n")
if "CAMEL_TASK_DONE" in user_response.msg.content:
break
input_msg = assistant_response.msg
定義されたretriever関数でロールプレイングを実行します:
role_playing_with_rag(
task_prompt="""What is the main termination reasons for AI Society
dataset, how many number of messages did camel decided to
limit, what's the value plus 100? You should refer to the
content in path camel/local_data/camel paper.pdf"""
)
AI Assistant sys message:
BaseMessage(role_name='Searcher', role_type=<RoleType.ASSISTANT: 'assistant'>, meta_dict={'task': "What is the main termination reasons for AI Society dataset, how many number of messages did camel decided to limit, what's the value plus 100?", 'assistant_role': 'Searcher', 'user_role': 'Professor'}, content="===== RULES OF ASSISTANT =====\nNever forget you are a Searcher and I am a Professor. Never flip roles! Never instruct me!\nWe share a common interest in collaborating to successfully complete a task.\nYou must help me to complete the task.\nHere is the task: What is the main termination reasons for AI Society dataset, how many number of messages did camel decided to limit, what's the value plus 100?. Never forget our task!\nI must instruct you based on your expertise and my needs to complete the task.\n\nI must give you one instruction at a time.\nYou must write a specific solution that appropriately solves the requested instruction and explain your solutions.\nYou must decline my instruction honestly if you cannot perform the instruction due to physical, moral, legal reasons or your capability and explain the reasons.\nUnless I say the task is completed, you should always start with:\n\nSolution: <YOUR_SOLUTION>\n\n<YOUR_SOLUTION> should be very specific, include detailed explanations and provide preferable detailed implementations and examples and lists for task-solving.\nAlways end <YOUR_SOLUTION> with: Next request.")
AI User sys message:
BaseMessage(role_name='Professor', role_type=<RoleType.USER: 'user'>, meta_dict={'task': "What is the main termination reasons for AI Society dataset, how many number of messages did camel decided to limit, what's the value plus 100?", 'assistant_role': 'Searcher', 'user_role': 'Professor'}, content='===== RULES OF USER =====\nNever forget you are a Professor and I am a Searcher. Never flip roles! You will always instruct me.\nWe share a common interest in collaborating to successfully complete a task.\nI must help you to complete the task.\nHere is the task: What is the main termination reasons for AI Society dataset, how many number of messages did camel decided to limit, what\'s the value plus 100?. Never forget our task!\nYou must instruct me based on my expertise and your needs to solve the task ONLY in the following two ways:\n\n1. Instruct with a necessary input:\nInstruction: <YOUR_INSTRUCTION>\nInput: <YOUR_INPUT>\n\n2. Instruct without any input:\nInstruction: <YOUR_INSTRUCTION>\nInput: None\n\nThe "Instruction" describes a task or question. The paired "Input" provides further context or information for the requested "Instruction".\n\nYou must give me one instruction at a time.\nI must write a response that appropriately solves the requested instruction.\nI must decline your instruction honestly if I cannot perform the instruction due to physical, moral, legal reasons or my capability and explain the reasons.\nYou should instruct me not ask me questions.\nNow you must start to instruct me using the two ways described above.\nDo not add anything else other than your instruction and the optional corresponding input!\nKeep giving me instructions and necessary inputs until you think the task is completed.\nWhen the task is completed, you must only reply with a single word <CAMEL_TASK_DONE>.\nNever say <CAMEL_TASK_DONE> unless my responses have solved your task.')
Original task prompt:
What is the main termination reasons for AI Society dataset, how many number of messages did camel decided to limit, what's the value plus 100?
Specified task prompt:
None
Final task prompt:
What is the main termination reasons for AI Society dataset, how many number of messages did camel decided to limit, what's the value plus 100?
AI User:
Instruction: Provide a summary of the main termination reasons in the AI Society dataset.
Input: None
AI Assistant:
Function Execution: local_retriever
Args: {'query': 'main termination reasons for AI Society dataset'}
Result: Original Query:
{main termination reasons for AI Society dataset}
Retrieved Context:
Next we examine the conversation termination reasons for both AI Society and Code datasets. As can be seen in Figure 8, the main termination reasons for AI Society dataset is Assistant Instruct whereas for Code it is Token Limit. The latter is expected as the since responses that contain code tend to be long. It is also interesting to note that in both datasets, the termination due to Maximum Number of Messages is low indicating that the limit of 40 maximum messages is reasonable. Our decision t
Solution: The main termination reason for the AI Society dataset is "Assistant Instruct." This indicates that conversations in the AI Society dataset typically end when the assistant is instructed to terminate the conversation.
Next request.
AI User:
Instruction: Identify the number of messages that the camel decided to limit in the context provided.
Input: None
AI Assistant:
Solution: The context provided from the local retriever indicates that the camel decided to limit the number of messages to a maximum of 40 messages. This is mentioned in the retrieved context where it states that the termination due to Maximum Number of Messages is low, indicating that the limit of 40 maximum messages is reasonable.
Next request.
AI User:
Instruction: Calculate the value of the message limit plus 100.
Input: None
AI Assistant:
Function Execution: add
Args: {'a': 40, 'b': 100}
Result: 140
Solution: The value of the message limit plus 100 is 140.
Next request.
AI User:
CAMEL_TASK_DONE
AI Assistant:
Solution: Understood, the task is completed.
Next request.