Génération améliorée par récupération (RAG) avec Milvus et Camel
Ce guide montre comment construire un système de génération améliorée par récupération (RAG) en utilisant CAMEL et Milvus.
Le système RAG combine un système de recherche avec un modèle génératif pour générer un nouveau texte basé sur une invite donnée. Le système récupère d'abord les documents pertinents d'un corpus à l'aide de Milvus, puis utilise un modèle génératif pour générer un nouveau texte basé sur les documents récupérés.
CAMEL est un cadre multi-agents. Milvus est la base de données vectorielles open-source la plus avancée au monde, construite pour alimenter la recherche de similarité d'intégration et les applications d'intelligence artificielle.
Dans ce carnet, nous montrons l'utilisation du module CAMEL Retrieve à la fois de manière personnalisée et de manière automatique. Nous montrerons également comment combiner AutoRetriever
avec ChatAgent
, et comment combiner AutoRetriever
avec RolePlaying
en utilisant Function Calling
.
4 parties principales sont incluses :
- RAG personnalisé
- Auto RAG
- Agent unique avec Auto RAG
- Jeu de rôle avec Auto RAG
Chargement des données
Commençons par charger le document CAMEL à partir de https://arxiv.org/pdf/2303.17760.pdf. Il s'agira de notre exemple local de données.
$ pip install -U "camel-ai[all]" pymilvus
Si vous utilisez Google Colab, pour activer les dépendances qui viennent d'être installées, vous devrez peut-être redémarrer le runtime (cliquez sur le menu "Runtime" en haut de l'écran, et sélectionnez "Restart session" dans le menu déroulant).
import os
import requests
os.makedirs("local_data", exist_ok=True)
url = "https://arxiv.org/pdf/2303.17760.pdf"
response = requests.get(url)
with open("local_data/camel paper.pdf", "wb") as file:
file.write(response.content)
1. RAG personnalisé
Dans cette section, nous allons définir notre pipeline RAG personnalisé, nous prendrons VectorRetriever
comme exemple. Nous définirons OpenAIEmbedding
comme modèle d'intégration et MilvusStorage
comme stockage.
Pour configurer l'intégration d'OpenAI, nous devons configurer OPENAI_API_KEY
comme indiqué ci-dessous.
os.environ["OPENAI_API_KEY"] = "Your Key"
Importer et définir l'instance d'intégration :
from camel.embeddings import OpenAIEmbedding
embedding_instance = OpenAIEmbedding()
Importer et définir l'instance de stockage vectoriel :
from camel.storages import MilvusStorage
storage_instance = MilvusStorage(
vector_dim=embedding_instance.get_output_dim(),
url_and_api_key=(
"./milvus_demo.db", # Your Milvus connection URI
"", # Your Milvus token
),
collection_name="camel_paper",
)
Pour url_and_api_key
:
- L'utilisation d'un fichier local, par exemple
./milvus.db
, comme URI de connexion Milvus est la méthode la plus pratique, car elle utilise automatiquement Milvus Lite pour stocker toutes les données dans ce fichier. - Si vous avez des données à grande échelle, vous pouvez configurer un serveur Milvus plus performant sur docker ou kubernetes. Dans cette configuration, veuillez utiliser l'uri du serveur, par exemple
http://localhost:19530
, comme url. - Si vous souhaitez utiliser Zilliz Cloud, le service cloud entièrement géré pour Milvus, ajustez l'uri et le jeton de connexion, qui correspondent au point final public et à la clé Api dans Zilliz Cloud.
Importez et définissez l'instance du récupérateur :
Par défaut, l'adresse similarity_threshold
est fixée à 0.75. Vous pouvez la modifier.
from camel.retrievers import VectorRetriever
vector_retriever = VectorRetriever(
embedding_model=embedding_instance, storage=storage_instance
)
Nous utilisons Unstructured Module
intégré pour diviser le contenu en petits morceaux, le contenu sera divisé automatiquement avec sa fonction chunk_by_title
, le caractère maximum pour chaque morceau est de 500 caractères, ce qui est une longueur appropriée pour OpenAIEmbedding
. Tout le texte contenu dans les morceaux sera intégré et stocké dans l'instance de stockage vectoriel, ce qui prendra un certain temps, veuillez patienter.
vector_retriever.process(content_input_path="local_data/camel paper.pdf")
[nltk_data] Downloading package punkt to /root/nltk_data...
[nltk_data] Unzipping tokenizers/punkt.zip.
[nltk_data] Downloading package averaged_perceptron_tagger to
[nltk_data] /root/nltk_data...
[nltk_data] Unzipping taggers/averaged_perceptron_tagger.zip.
Nous pouvons maintenant extraire des informations du stockage vectoriel en lançant une requête. Par défaut, le système vous renverra le contenu textuel du premier bloc ayant le score de similarité cosinus le plus élevé, et le score de similarité doit être supérieur à 0,75 pour garantir que le contenu récupéré est pertinent par rapport à la requête. Vous pouvez également modifier la valeur de top_k
.
La liste des chaînes renvoyées comprend
- score de similarité
- chemin d'accès au contenu
- métadonnées
- texte
retrieved_info = vector_retriever.query(query="What is CAMEL?", top_k=1)
print(retrieved_info)
[{'similarity score': '0.8321675658226013', 'content path': 'local_data/camel paper.pdf', 'metadata': {'last_modified': '2024-04-19T14:40:00', 'filetype': 'application/pdf', 'page_number': 45}, 'text': 'CAMEL Data and Code License The intended purpose and licensing of CAMEL is solely for research use. The source code is licensed under Apache 2.0. The datasets are licensed under CC BY NC 4.0, which permits only non-commercial usage. It is advised that any models trained using the dataset should not be utilized for anything other than research purposes.\n\n45'}]
Essayons une requête non pertinente :
retrieved_info_irrelevant = vector_retriever.query(
query="Compared with dumpling and rice, which should I take for dinner?", top_k=1
)
print(retrieved_info_irrelevant)
[{'text': 'No suitable information retrieved from local_data/camel paper.pdf with similarity_threshold = 0.75.'}]
2. Auto RAG
Dans cette section, nous allons exécuter le programme AutoRetriever
avec les paramètres par défaut. Il utilise OpenAIEmbedding
comme modèle d'intégration par défaut et Milvus
comme stockage vectoriel par défaut.
Voici ce que vous devez faire
- Définir les chemins d'entrée du contenu, qui peuvent être des chemins locaux ou des url distantes.
- Définir l'url distante et la clé api pour Milvus
- Donner une requête
Le pipeline Auto RAG créera des collections pour les chemins d'entrée de contenu donnés, le nom de la collection sera défini automatiquement en fonction du nom du chemin d'entrée de contenu, si la collection existe, elle sera récupérée directement.
from camel.retrievers import AutoRetriever
from camel.types import StorageType
auto_retriever = AutoRetriever(
url_and_api_key=(
"./milvus_demo.db", # Your Milvus connection URI
"", # Your Milvus token
),
storage_type=StorageType.MILVUS,
embedding_model=embedding_instance,
)
retrieved_info = auto_retriever.run_vector_retriever(
query="What is CAMEL-AI",
content_input_paths=[
"local_data/camel paper.pdf", # example local path
"https://www.camel-ai.org/", # example remote url
],
top_k=1,
return_detailed_info=True,
)
print(retrieved_info)
Original Query:
{What is CAMEL-AI}
Retrieved Context:
{'similarity score': '0.8252888321876526', 'content path': 'local_data/camel paper.pdf', 'metadata': {'last_modified': '2024-04-19T14:40:00', 'filetype': 'application/pdf', 'page_number': 7}, 'text': ' Section 3.2, to simulate assistant-user cooperation. For our analysis, we set our attention on AI Society setting. We also gathered conversational data, named CAMEL AI Society and CAMEL Code datasets and problem-solution pairs data named CAMEL Math and CAMEL Science and analyzed and evaluated their quality. Moreover, we will discuss potential extensions of our framework and highlight both the risks and opportunities that future AI society might present.'}
{'similarity score': '0.8378663659095764', 'content path': 'https://www.camel-ai.org/', 'metadata': {'filetype': 'text/html', 'languages': ['eng'], 'page_number': 1, 'url': 'https://www.camel-ai.org/', 'link_urls': ['#h.3f4tphhd9pn8', 'https://join.slack.com/t/camel-ai/shared_invite/zt-2g7xc41gy-_7rcrNNAArIP6sLQqldkqQ', 'https://discord.gg/CNcNpquyDc'], 'link_texts': [None, None, None], 'emphasized_text_contents': ['Mission', 'CAMEL-AI.org', 'is an open-source community dedicated to the study of autonomous and communicative agents. We believe that studying these agents on a large scale offers valuable insights into their behaviors, capabilities, and potential risks. To facilitate research in this field, we provide, implement, and support various types of agents, tasks, prompts, models, datasets, and simulated environments.', 'Join us via', 'Slack', 'Discord', 'or'], 'emphasized_text_tags': ['span', 'span', 'span', 'span', 'span', 'span', 'span']}, 'text': 'Mission\n\nCAMEL-AI.org is an open-source community dedicated to the study of autonomous and communicative agents. We believe that studying these agents on a large scale offers valuable insights into their behaviors, capabilities, and potential risks. To facilitate research in this field, we provide, implement, and support various types of agents, tasks, prompts, models, datasets, and simulated environments.\n\nJoin us via\n\nSlack\n\nDiscord\n\nor'}
3. Agent unique avec Auto RAG
Dans cette section, nous allons montrer comment combiner AutoRetriever
avec un seul agent ChatAgent
.
Mettons en place une fonction d'agent, dans cette fonction nous pouvons obtenir la réponse en fournissant une requête à cet agent.
from camel.agents import ChatAgent
from camel.messages import BaseMessage
from camel.types import RoleType
from camel.retrievers import AutoRetriever
from camel.types import StorageType
def single_agent(query: str) -> str:
# Set agent role
assistant_sys_msg = BaseMessage(
role_name="Assistant",
role_type=RoleType.ASSISTANT,
meta_dict=None,
content="""You are a helpful assistant to answer question,
I will give you the Original Query and Retrieved Context,
answer the Original Query based on the Retrieved Context,
if you can't answer the question just say I don't know.""",
)
# Add auto retriever
auto_retriever = AutoRetriever(
url_and_api_key=(
"./milvus_demo.db", # Your Milvus connection URI
"", # Your Milvus token
),
storage_type=StorageType.MILVUS,
embedding_model=embedding_instance,
)
retrieved_info = auto_retriever.run_vector_retriever(
query=query,
content_input_paths=[
"local_data/camel paper.pdf", # example local path
"https://www.camel-ai.org/", # example remote url
],
# vector_storage_local_path="storage_default_run",
top_k=1,
return_detailed_info=True,
)
# Pass the retrieved infomation to agent
user_msg = BaseMessage.make_user_message(role_name="User", content=retrieved_info)
agent = ChatAgent(assistant_sys_msg)
# Get response
assistant_response = agent.step(user_msg)
return assistant_response.msg.content
print(single_agent("What is CAMEL-AI"))
CAMEL-AI is an open-source community dedicated to the study of autonomous and communicative agents. It provides, implements, and supports various types of agents, tasks, prompts, models, datasets, and simulated environments to facilitate research in this field.
4. Jeu de rôle avec Auto RAG
Dans cette section, nous allons montrer comment combiner RETRIEVAL_FUNCS
avec RolePlaying
en appliquant Function Calling
.
from typing import List
from colorama import Fore
from camel.agents.chat_agent import FunctionCallingRecord
from camel.configs import ChatGPTConfig
from camel.functions import (
MATH_FUNCS,
RETRIEVAL_FUNCS,
)
from camel.societies import RolePlaying
from camel.types import ModelType
from camel.utils import print_text_animated
def role_playing_with_rag(
task_prompt, model_type=ModelType.GPT_4O, chat_turn_limit=10
) -> None:
task_prompt = task_prompt
user_model_config = ChatGPTConfig(temperature=0.0)
function_list = [
*MATH_FUNCS,
*RETRIEVAL_FUNCS,
]
assistant_model_config = ChatGPTConfig(
tools=function_list,
temperature=0.0,
)
role_play_session = RolePlaying(
assistant_role_name="Searcher",
user_role_name="Professor",
assistant_agent_kwargs=dict(
model_type=model_type,
model_config=assistant_model_config,
tools=function_list,
),
user_agent_kwargs=dict(
model_type=model_type,
model_config=user_model_config,
),
task_prompt=task_prompt,
with_task_specify=False,
)
print(
Fore.GREEN
+ f"AI Assistant sys message:\n{role_play_session.assistant_sys_msg}\n"
)
print(Fore.BLUE + f"AI User sys message:\n{role_play_session.user_sys_msg}\n")
print(Fore.YELLOW + f"Original task prompt:\n{task_prompt}\n")
print(
Fore.CYAN
+ f"Specified task prompt:\n{role_play_session.specified_task_prompt}\n"
)
print(Fore.RED + f"Final task prompt:\n{role_play_session.task_prompt}\n")
n = 0
input_msg = role_play_session.init_chat()
while n < chat_turn_limit:
n += 1
assistant_response, user_response = role_play_session.step(input_msg)
if assistant_response.terminated:
print(
Fore.GREEN
+ (
"AI Assistant terminated. Reason: "
f"{assistant_response.info['termination_reasons']}."
)
)
break
if user_response.terminated:
print(
Fore.GREEN
+ (
"AI User terminated. "
f"Reason: {user_response.info['termination_reasons']}."
)
)
break
# Print output from the user
print_text_animated(Fore.BLUE + f"AI User:\n\n{user_response.msg.content}\n")
# Print output from the assistant, including any function
# execution information
print_text_animated(Fore.GREEN + "AI Assistant:")
tool_calls: List[FunctionCallingRecord] = assistant_response.info["tool_calls"]
for func_record in tool_calls:
print_text_animated(f"{func_record}")
print_text_animated(f"{assistant_response.msg.content}\n")
if "CAMEL_TASK_DONE" in user_response.msg.content:
break
input_msg = assistant_response.msg
Exécutez le jeu de rôle avec la fonction de récupération définie :
role_playing_with_rag(
task_prompt="""What is the main termination reasons for AI Society
dataset, how many number of messages did camel decided to
limit, what's the value plus 100? You should refer to the
content in path camel/local_data/camel paper.pdf"""
)
AI Assistant sys message:
BaseMessage(role_name='Searcher', role_type=<RoleType.ASSISTANT: 'assistant'>, meta_dict={'task': "What is the main termination reasons for AI Society dataset, how many number of messages did camel decided to limit, what's the value plus 100?", 'assistant_role': 'Searcher', 'user_role': 'Professor'}, content="===== RULES OF ASSISTANT =====\nNever forget you are a Searcher and I am a Professor. Never flip roles! Never instruct me!\nWe share a common interest in collaborating to successfully complete a task.\nYou must help me to complete the task.\nHere is the task: What is the main termination reasons for AI Society dataset, how many number of messages did camel decided to limit, what's the value plus 100?. Never forget our task!\nI must instruct you based on your expertise and my needs to complete the task.\n\nI must give you one instruction at a time.\nYou must write a specific solution that appropriately solves the requested instruction and explain your solutions.\nYou must decline my instruction honestly if you cannot perform the instruction due to physical, moral, legal reasons or your capability and explain the reasons.\nUnless I say the task is completed, you should always start with:\n\nSolution: <YOUR_SOLUTION>\n\n<YOUR_SOLUTION> should be very specific, include detailed explanations and provide preferable detailed implementations and examples and lists for task-solving.\nAlways end <YOUR_SOLUTION> with: Next request.")
AI User sys message:
BaseMessage(role_name='Professor', role_type=<RoleType.USER: 'user'>, meta_dict={'task': "What is the main termination reasons for AI Society dataset, how many number of messages did camel decided to limit, what's the value plus 100?", 'assistant_role': 'Searcher', 'user_role': 'Professor'}, content='===== RULES OF USER =====\nNever forget you are a Professor and I am a Searcher. Never flip roles! You will always instruct me.\nWe share a common interest in collaborating to successfully complete a task.\nI must help you to complete the task.\nHere is the task: What is the main termination reasons for AI Society dataset, how many number of messages did camel decided to limit, what\'s the value plus 100?. Never forget our task!\nYou must instruct me based on my expertise and your needs to solve the task ONLY in the following two ways:\n\n1. Instruct with a necessary input:\nInstruction: <YOUR_INSTRUCTION>\nInput: <YOUR_INPUT>\n\n2. Instruct without any input:\nInstruction: <YOUR_INSTRUCTION>\nInput: None\n\nThe "Instruction" describes a task or question. The paired "Input" provides further context or information for the requested "Instruction".\n\nYou must give me one instruction at a time.\nI must write a response that appropriately solves the requested instruction.\nI must decline your instruction honestly if I cannot perform the instruction due to physical, moral, legal reasons or my capability and explain the reasons.\nYou should instruct me not ask me questions.\nNow you must start to instruct me using the two ways described above.\nDo not add anything else other than your instruction and the optional corresponding input!\nKeep giving me instructions and necessary inputs until you think the task is completed.\nWhen the task is completed, you must only reply with a single word <CAMEL_TASK_DONE>.\nNever say <CAMEL_TASK_DONE> unless my responses have solved your task.')
Original task prompt:
What is the main termination reasons for AI Society dataset, how many number of messages did camel decided to limit, what's the value plus 100?
Specified task prompt:
None
Final task prompt:
What is the main termination reasons for AI Society dataset, how many number of messages did camel decided to limit, what's the value plus 100?
AI User:
Instruction: Provide a summary of the main termination reasons in the AI Society dataset.
Input: None
AI Assistant:
Function Execution: local_retriever
Args: {'query': 'main termination reasons for AI Society dataset'}
Result: Original Query:
{main termination reasons for AI Society dataset}
Retrieved Context:
Next we examine the conversation termination reasons for both AI Society and Code datasets. As can be seen in Figure 8, the main termination reasons for AI Society dataset is Assistant Instruct whereas for Code it is Token Limit. The latter is expected as the since responses that contain code tend to be long. It is also interesting to note that in both datasets, the termination due to Maximum Number of Messages is low indicating that the limit of 40 maximum messages is reasonable. Our decision t
Solution: The main termination reason for the AI Society dataset is "Assistant Instruct." This indicates that conversations in the AI Society dataset typically end when the assistant is instructed to terminate the conversation.
Next request.
AI User:
Instruction: Identify the number of messages that the camel decided to limit in the context provided.
Input: None
AI Assistant:
Solution: The context provided from the local retriever indicates that the camel decided to limit the number of messages to a maximum of 40 messages. This is mentioned in the retrieved context where it states that the termination due to Maximum Number of Messages is low, indicating that the limit of 40 maximum messages is reasonable.
Next request.
AI User:
Instruction: Calculate the value of the message limit plus 100.
Input: None
AI Assistant:
Function Execution: add
Args: {'a': 40, 'b': 100}
Result: 140
Solution: The value of the message limit plus 100 is 140.
Next request.
AI User:
CAMEL_TASK_DONE
AI Assistant:
Solution: Understood, the task is completed.
Next request.