Collection Schema

A collection schema is the logical definition of a collection. Usually you need to define the field schema before defining a collection schema and creating a collection.

Field schema properties

Poperties Description Note
field Fields in the collection to create Mandatory
description Description of the collection Data type: String.
auto_id Whether to enable Automatic ID allocation or not Data type: Boolean (true or false).

Create a collection schema

Define the field schemas before defining a collection schema.
from pymilvus import FieldSchema, CollectionSchema
id_field = FieldSchema(name="id", dtype=DataType.INT64, is_primary=True, description="primary id")
age_field = FieldSchema(name="age", dtype=DataType.INT64, description="age")
embedding_field = FieldSchema(name="embedding", dtype=DataType.FLOAT_VECTOR, dim=128, description="vector")
schema = CollectionSchema(fields=[id_field, age_field, embedding_field], auto_id=False, description="desc of a collection")

Create a collection with the schema specified:

from pymilvus import Collection
collection_name1 = "tutorial_1"
collection1 = Collection(name=collection_name1, schema=schema, using='default', shards_num=2)
You can define the shard number with shards_num and in which Milvus server you wish to create a collection by specifying the alias in using.

You can also create a collection with `Collection.construct_from_dataframe`, which automatically generates a collction schema from DataFrame and creates a collection.
import pandas as pd
df = pd.DataFrame({
        "id": [i for i in range(nb)],
        "age": [random.randint(20, 40) for i in range(nb)],
        "embedding": [[random.random() for _ in range(dim)] for _ in range(nb)]
collection, ins_res = Collection.construct_from_dataframe(
Is this page helpful?
Scored Successfully!